Copied to
clipboard

G = C5×C24⋊C5order 400 = 24·52

Direct product of C5 and C24⋊C5

direct product, metabelian, soluble, monomial, A-group

Aliases: C5×C24⋊C5, C24⋊C52, (C23×C10)⋊C5, SmallGroup(400,213)

Series: Derived Chief Lower central Upper central

C1C24 — C5×C24⋊C5
C1C24C24⋊C5 — C5×C24⋊C5
C24 — C5×C24⋊C5
C1C5

Generators and relations for C5×C24⋊C5
 G = < a,b,c,d,e,f | a5=b2=c2=d2=e2=f5=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcd, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, fef-1=b >

5C2
5C2
5C2
16C5
16C5
16C5
16C5
16C5
5C22
5C22
5C22
5C22
5C22
5C22
5C22
5C10
5C10
5C10
16C52
5C23
5C23
5C23
5C2×C10
5C2×C10
5C2×C10
5C2×C10
5C2×C10
5C2×C10
5C2×C10
5C22×C10
5C22×C10
5C22×C10

Smallest permutation representation of C5×C24⋊C5
On 50 points
Generators in S50
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)
(1 13)(2 14)(3 15)(4 11)(5 12)(36 42)(37 43)(38 44)(39 45)(40 41)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 50)(7 46)(8 47)(9 48)(10 49)(16 22)(17 23)(18 24)(19 25)(20 21)(26 32)(27 33)(28 34)(29 35)(30 31)
(26 32)(27 33)(28 34)(29 35)(30 31)(36 42)(37 43)(38 44)(39 45)(40 41)
(6 50)(7 46)(8 47)(9 48)(10 49)(26 32)(27 33)(28 34)(29 35)(30 31)
(1 46 40 29 18)(2 47 36 30 19)(3 48 37 26 20)(4 49 38 27 16)(5 50 39 28 17)(6 45 34 23 12)(7 41 35 24 13)(8 42 31 25 14)(9 43 32 21 15)(10 44 33 22 11)

G:=sub<Sym(50)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50), (1,13)(2,14)(3,15)(4,11)(5,12)(36,42)(37,43)(38,44)(39,45)(40,41), (1,13)(2,14)(3,15)(4,11)(5,12)(6,50)(7,46)(8,47)(9,48)(10,49)(16,22)(17,23)(18,24)(19,25)(20,21)(26,32)(27,33)(28,34)(29,35)(30,31), (26,32)(27,33)(28,34)(29,35)(30,31)(36,42)(37,43)(38,44)(39,45)(40,41), (6,50)(7,46)(8,47)(9,48)(10,49)(26,32)(27,33)(28,34)(29,35)(30,31), (1,46,40,29,18)(2,47,36,30,19)(3,48,37,26,20)(4,49,38,27,16)(5,50,39,28,17)(6,45,34,23,12)(7,41,35,24,13)(8,42,31,25,14)(9,43,32,21,15)(10,44,33,22,11)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50), (1,13)(2,14)(3,15)(4,11)(5,12)(36,42)(37,43)(38,44)(39,45)(40,41), (1,13)(2,14)(3,15)(4,11)(5,12)(6,50)(7,46)(8,47)(9,48)(10,49)(16,22)(17,23)(18,24)(19,25)(20,21)(26,32)(27,33)(28,34)(29,35)(30,31), (26,32)(27,33)(28,34)(29,35)(30,31)(36,42)(37,43)(38,44)(39,45)(40,41), (6,50)(7,46)(8,47)(9,48)(10,49)(26,32)(27,33)(28,34)(29,35)(30,31), (1,46,40,29,18)(2,47,36,30,19)(3,48,37,26,20)(4,49,38,27,16)(5,50,39,28,17)(6,45,34,23,12)(7,41,35,24,13)(8,42,31,25,14)(9,43,32,21,15)(10,44,33,22,11) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50)], [(1,13),(2,14),(3,15),(4,11),(5,12),(36,42),(37,43),(38,44),(39,45),(40,41)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,50),(7,46),(8,47),(9,48),(10,49),(16,22),(17,23),(18,24),(19,25),(20,21),(26,32),(27,33),(28,34),(29,35),(30,31)], [(26,32),(27,33),(28,34),(29,35),(30,31),(36,42),(37,43),(38,44),(39,45),(40,41)], [(6,50),(7,46),(8,47),(9,48),(10,49),(26,32),(27,33),(28,34),(29,35),(30,31)], [(1,46,40,29,18),(2,47,36,30,19),(3,48,37,26,20),(4,49,38,27,16),(5,50,39,28,17),(6,45,34,23,12),(7,41,35,24,13),(8,42,31,25,14),(9,43,32,21,15),(10,44,33,22,11)]])

40 conjugacy classes

class 1 2A2B2C5A5B5C5D5E···5X10A···10L
order122255555···510···10
size1555111116···165···5

40 irreducible representations

dim11155
type++
imageC1C5C5C24⋊C5C5×C24⋊C5
kernelC5×C24⋊C5C24⋊C5C23×C10C5C1
# reps1204312

Matrix representation of C5×C24⋊C5 in GL6(𝔽11)

900000
010000
001000
000100
000010
000001
,
100000
0100000
001000
000100
0016100
040001
,
100000
0100000
0010000
0001000
0810510
0000010
,
100000
010000
001000
0001000
0310100
000701
,
100000
010000
001000
0001000
000510
0790010
,
500000
001000
000100
031690
000051
000070

G:=sub<GL(6,GF(11))| [9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,10,0,0,0,4,0,0,1,0,1,0,0,0,0,1,6,0,0,0,0,0,10,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,10,0,0,8,0,0,0,10,0,10,0,0,0,0,10,5,0,0,0,0,0,1,0,0,0,0,0,0,10],[1,0,0,0,0,0,0,1,0,0,3,0,0,0,1,0,1,0,0,0,0,10,0,7,0,0,0,0,10,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,7,0,0,1,0,0,9,0,0,0,10,5,0,0,0,0,0,1,0,0,0,0,0,0,10],[5,0,0,0,0,0,0,0,0,3,0,0,0,1,0,1,0,0,0,0,1,6,0,0,0,0,0,9,5,7,0,0,0,0,1,0] >;

C5×C24⋊C5 in GAP, Magma, Sage, TeX

C_5\times C_2^4\rtimes C_5
% in TeX

G:=Group("C5xC2^4:C5");
// GroupNames label

G:=SmallGroup(400,213);
// by ID

G=gap.SmallGroup(400,213);
# by ID

G:=PCGroup([6,-5,-5,-2,2,2,2,3602,5403,8254,13505]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^2=f^5=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,f*e*f^-1=b>;
// generators/relations

Export

Subgroup lattice of C5×C24⋊C5 in TeX

׿
×
𝔽